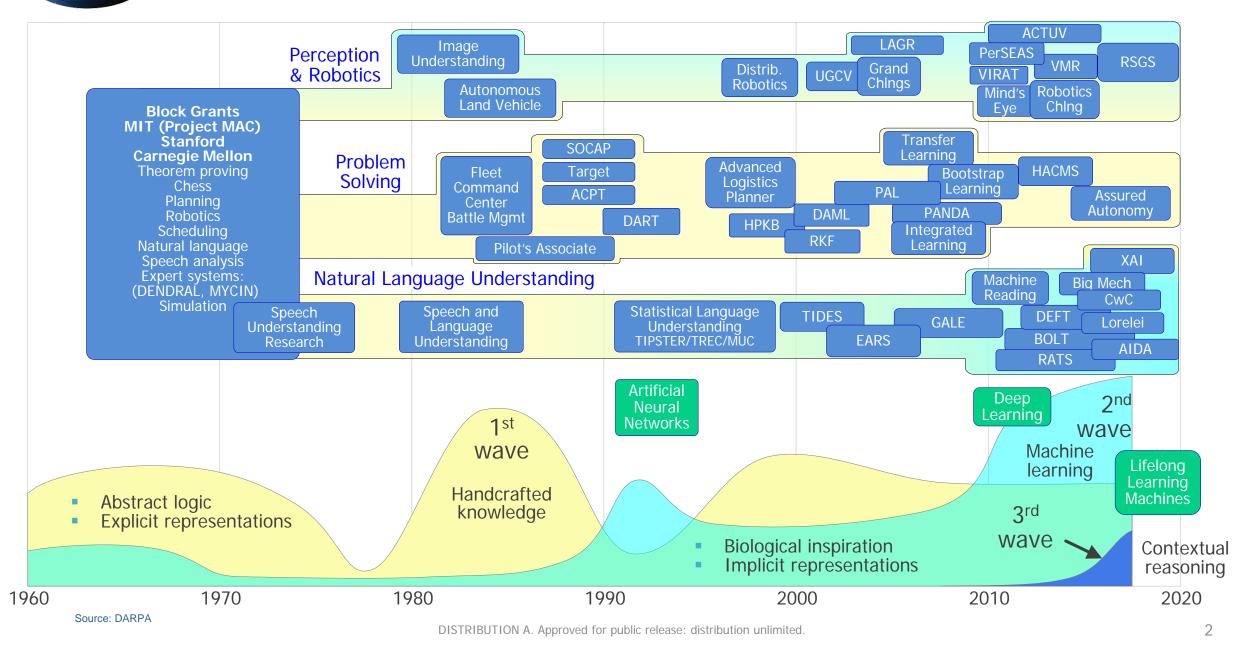
Lifelong Learning in Nature and Machines

Dr. Hava Siegelmann

US Defense Advanced Research Projects Agency (DARPA)

4 November 2019 Presented to COMCAS 2019, Tel Aviv, Israel

DARPA DARPA established the foundations of AI



Beyond human capabilities

Source: Apple advertisement

Source: https://i2.kknews.cc/SIG=29vnh65/2175/3455714929.jpg

Source: IBM advertisement

Source: DeepMind Technologies

Source: Atari game screen shot

Source: https://www.bbc.com/news/technology-44300952

Source: https://www.theatlantic.com/magazine/archive/2018/11/alexa-how-will-you-change-us/570844/

But not trustworthy!!

- Open environment
- Embedded: self-aware, environment, other agents
- Basic safety

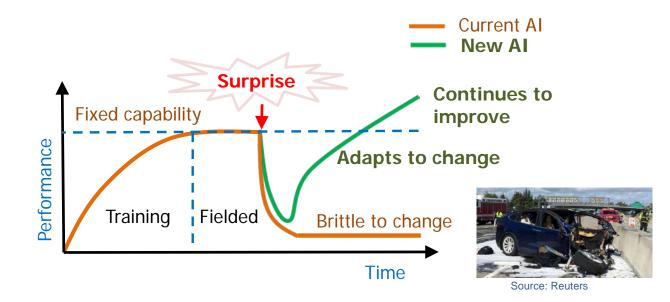
Amazon scraps secret AI recruiting tool that showed bias against women (Source: Reuters, 8 Oct 2018)

Source: https://www.reddit.com/r/funny/comments/ 7r9ptc/i_took_a_few_shots_at_lake_louise_today_and/ dsvv1nw/

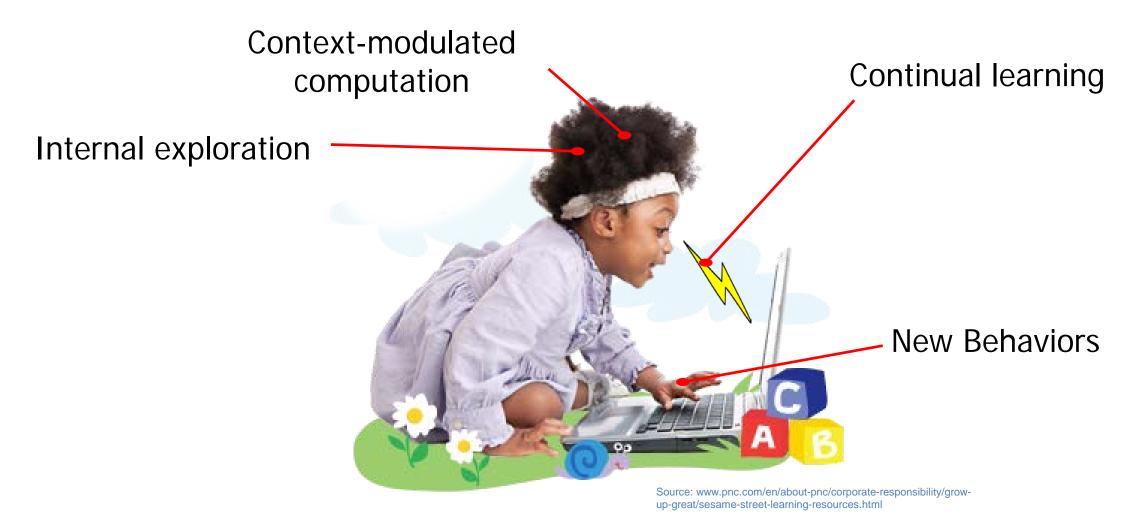
Identifying the Key Limitation

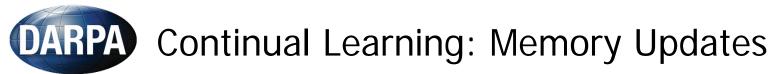
AI is frozen at training time; AI only does what it was trained to do

- No way to prepare a training set for all possible futures
- Malfunctions in unseen circumstances
- Worse with widespread applications



The Pillars of Lifelong Learning



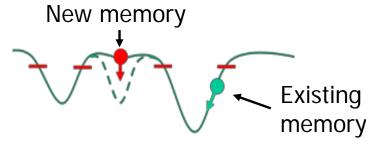


Retaining memories during lifelong learning. In brains, hippocampus replays experiences into long term memory during sleep/rest

UC Irvine

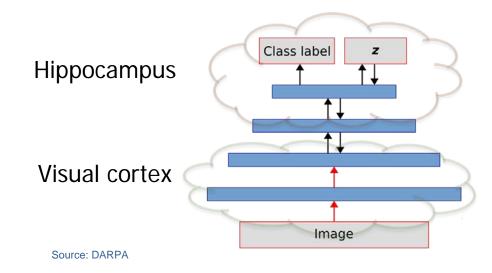
Retrain vs. Replay: requires original data vs. from internal storage

Fast Internal updates: Only representations similar to the new memory need to be replayed



Baylor

Generative replay (like in dreams): from deep replay: best results



Source: DARPA

Internal Exploration: Learning Without Explicit Tasks/Labels

Columbia University Self-modeling for speedy adaptation to new conditions

Source: Columbia Univ (Prof. Hod Lipson)

NYU + Toyota-TIC

Self-play kick starts learning in the absence of explicit tasks / labels

Fill in the blank

Reference Image

Source: Univ. of Mass. Amherst

Colorization

Source: Univ. of Mass. Amherst

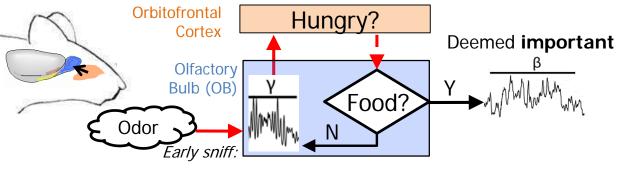
Image matching

Source: Univ. of Mass. Amherst

DARPA Context Modulated Computation

U Chicago

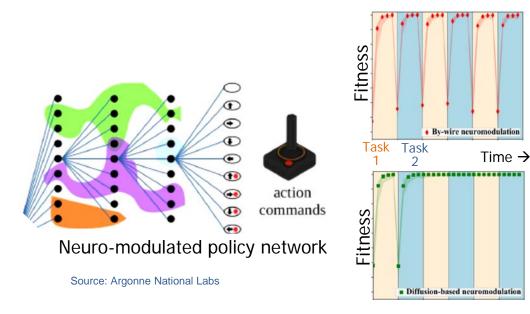
In brains, neuromodulators update computational architecture based on internal context



Source: University of Chicago

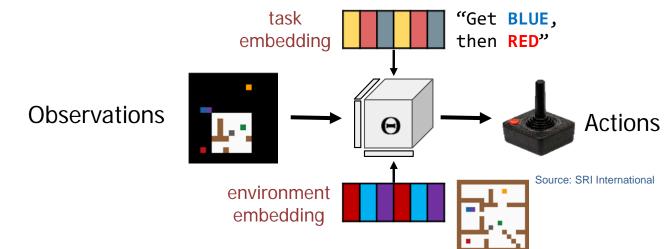
Wyoming, ANL, Teledyne

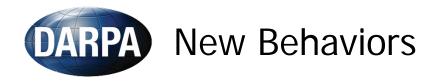
Neuromodulation translates to better ML: organic modularity for differential plasticity



UPenn, SRI

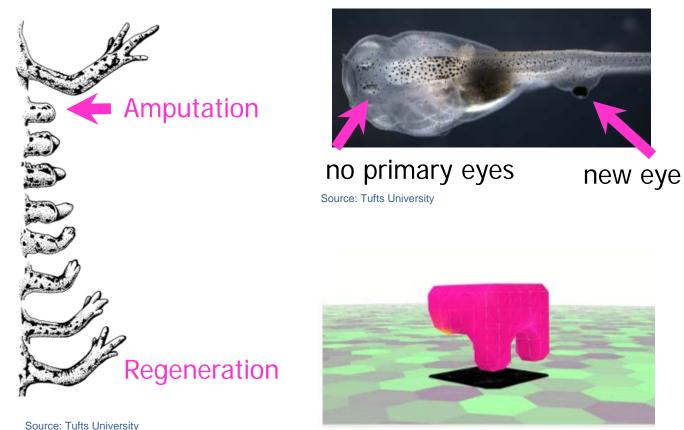
In games, $(task \times environment)$ modulate action. Continuous representation for optimized extrapolation of action





Tufts

New behaviors for **changes of body**, inspired by bioelectric somatic regeneration



Source: Tufts University

UMass

Intelligent search – apply self-learned

(visual/functional) associations

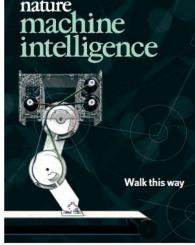
Source: Univ. of Mass., Amherst

Models behavior of young animals (including humans) in self-discovery of necessary behavior towards achieving goals (for example, reaching for objects)

Interesting work from Univ. of Southern CA *General-to-Specific* Learning approach towards achieving desired motor action:

- 1. Five minutes of motor babbling with information stored in an analog neural network.
- 2. Stop when motion is "good enough."
- 3. Apply resulting analog neural net to other tasks.

Source: Valero-Cuevas / Parker lab, USC

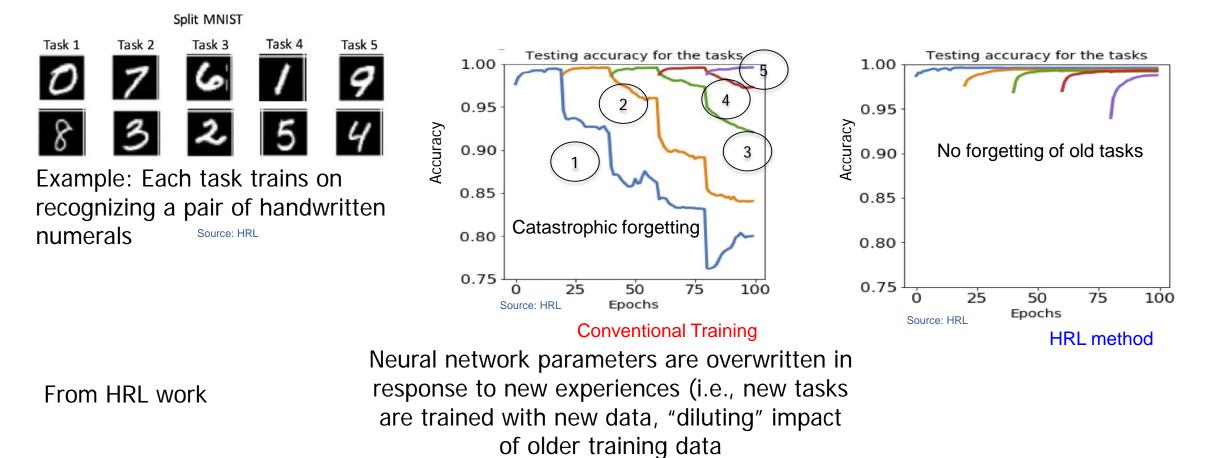


- Robust to disturbances
- Continual adaption through familiarity, not optimality.
- Babbling concept applicable to many applications, including sensor motion, radar, signal processing, etc.

March 2019 issue, see valerolab.org/g2p

Neural networks can work well when inference is based on trained data sets.

- As new data sets corresponding to new labels are introduced to the network, what happens?
 - Accuracy degrades for inference based on earlier training sets → Catastrophic Forgetting
- We need means to preserve the accuracy of earlier training



DARPA Training for Lifetime Learning

SRI

Standard ML datasets don't capture lifelong learning challenges. Richer datasets and environments are needed.

Modified StarCraft2* interface enables surprises to be injected into the game on-the-fly:

- Change terrain
- Alter unit capability •
- Switch friends to foes
- Move goals •
- Increase weapon range •
- . . .

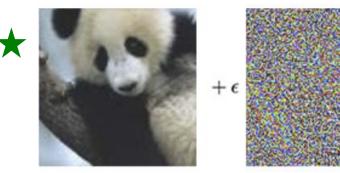
Example simulation with injected surprises

DARPA Another problem: Using AI confusion for adversarial attacks

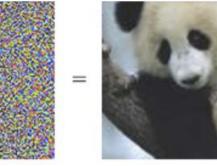
Source: Atari screen shots

Source: https://encryptedtbn0.gstatic.com/images?q=tbn:ANd9GcR1JBgUwaxPbtb pHg1V9jr0udGfqFD0xu5GWoJJ9WKHvyHS42G5oA

Source: https://blog.openai.com/adversarial-example-research/



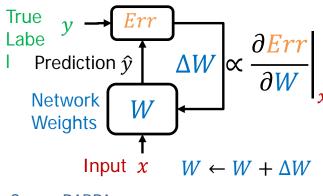
"panda"



"gibbon"

Normal Training:

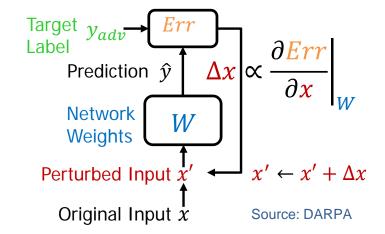
Change the **weights** to make the prediction match the **true label**



Source: DARPA

White Box Attack:

Change the **input** to make the prediction match the **target label**



Move picture beyond boundary into another area Source: DARPA

Fooling Deep Neural Networks with Physical Attacks

Security and Privacy Research, Intel Labs

Shang-tse Chen | Cory Cornelius | Jason Martin

Source: Intel Labs

Attacks have been adapted to audio Example: targeted attacks on speech recognition (digital, white-box)

"okay google browse to evil dot com"

Source: Google

All physical attacks and audio assume white box Audio – all manipulations are digitized

Such attacks are applicable to RF signals too!

Accessory

Inject into images

Generate poisoned data (exaggerated for visualization)

Poisoned Recognition System

Add glasses

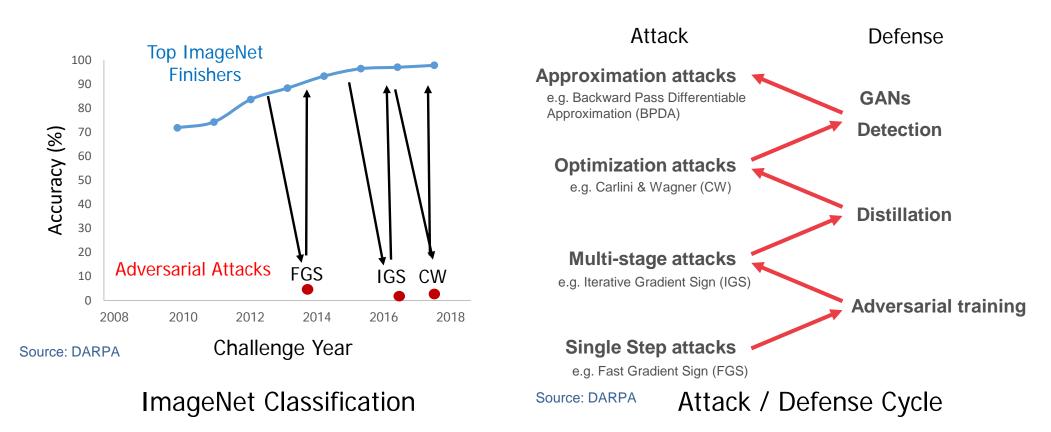
Source: https://cdn2.theweek.co.uk/sites/theweek/files/styles/16x8_544/public/2017/05/wonder-woman-hed-2017.jpg?itok=PzGwVZUH

I

DISTRIBUTION A. Approved for public release: distribution unlimited.

Current AI systems are vulnerable

Adversarial attacks cause a catastrophic reduction in ML capability



Many defenses have been tried and

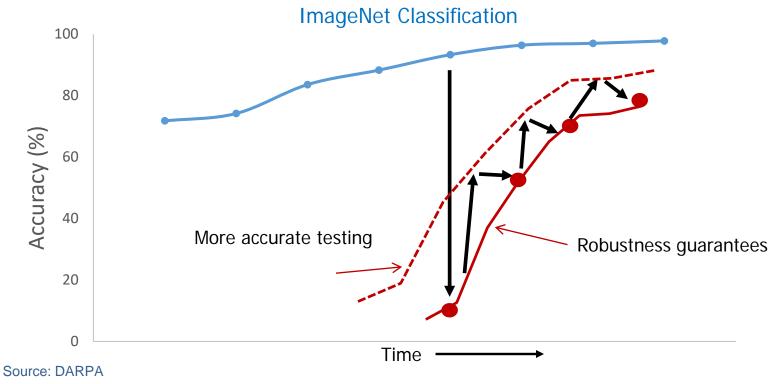
failed to generalize to new attacks

From DARPA "GARD" (Guaranteeing AI Robustness against Deception) Program

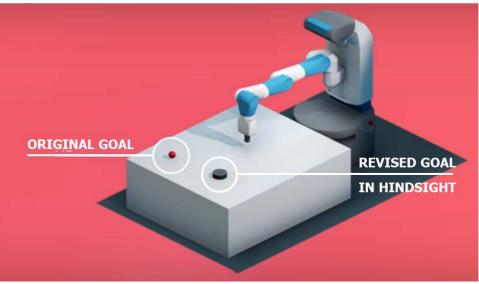
Guaranteeing AI Robustness against Deception (GARD)

Three efforts:

- A) Fundamental study of robust generalization
- B) Principled defenses and new defensible ML systems
- C) Testbeds to evaluate defensibility under different threat scenarios



Starting A New Era of Lifelong Machine Learning



Source: futurism.com/ai-learn-mistakes-openai

Lifelong Learning, Even from Failures

Source: Sofge, Popular Science

Prosthetics That Learn To Adapt to The Wearer

In a few years, much of what we call AI won't be considered AI without lifelong learning and robustness!

How Do Deep Neural Networks Generalize?

With collaborator Alex Gain (Univ. of Massachusetts, Amherst)

*The views, opinions and/or findings expressed are those of the author and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.

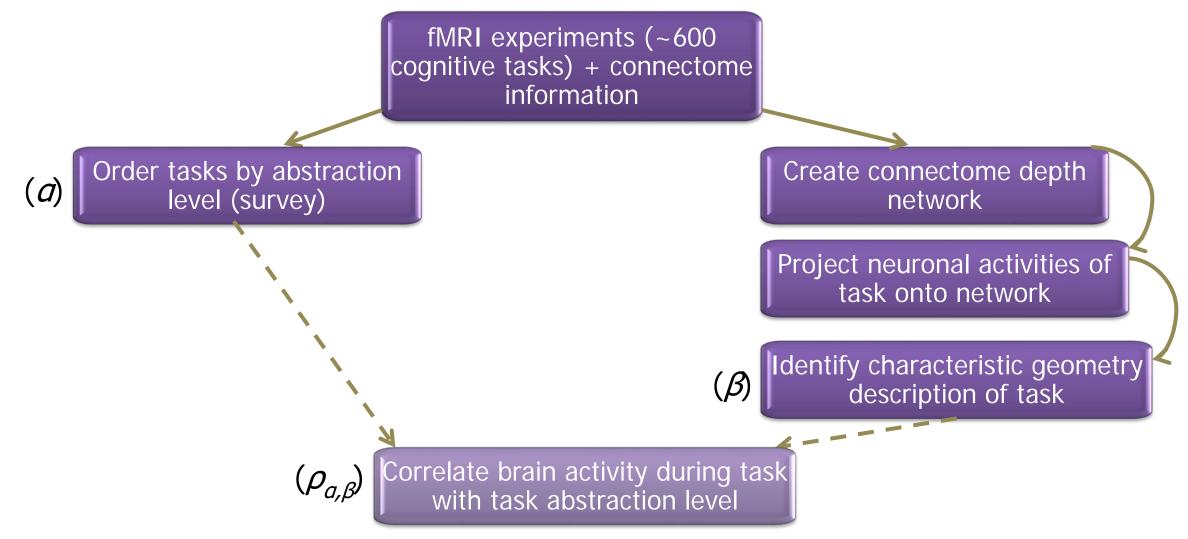
- Review prior work
- How does the human brain perform abstract thinking?
 - > Findings: Geometric activity correlates to human brain abstraction
 - Abstraction and Generalization
- Do deep neural networks behave like our brains?
 - > Defining the: Cognitive Neural Activation (CNA)- in math
 - ➤ Finding: DNN generalizes like the brain
 - ➢ Finding: Slope predicts levels of generalization in DNN

Finding fundamental principles of human abstraction via inter-related hierarchies:

- Big data analytics study used whole brain connectome information and 20 years fMRI experiments (Brainmap, Neurosynth)
- Hierarchy of depth related neuronal firing of cognitive behaviors
- Correlated hierarchy of behaviors' aggregation of representation, cognition, & abstractions

This prior work with Patrick Taylor (BINDS lab postdoc) Nature Scientific Reports (2015)

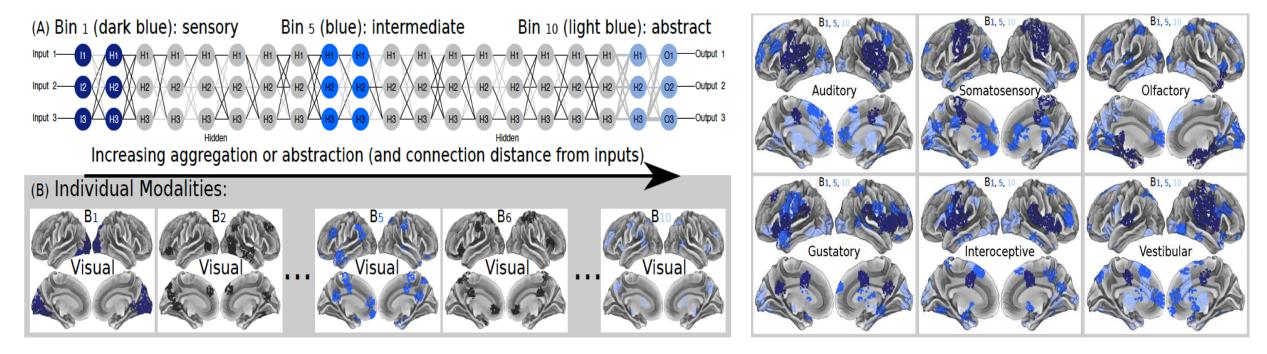
Research Plan for Brain Abstraction



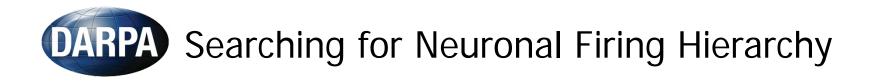
Building Connectome Depth Network

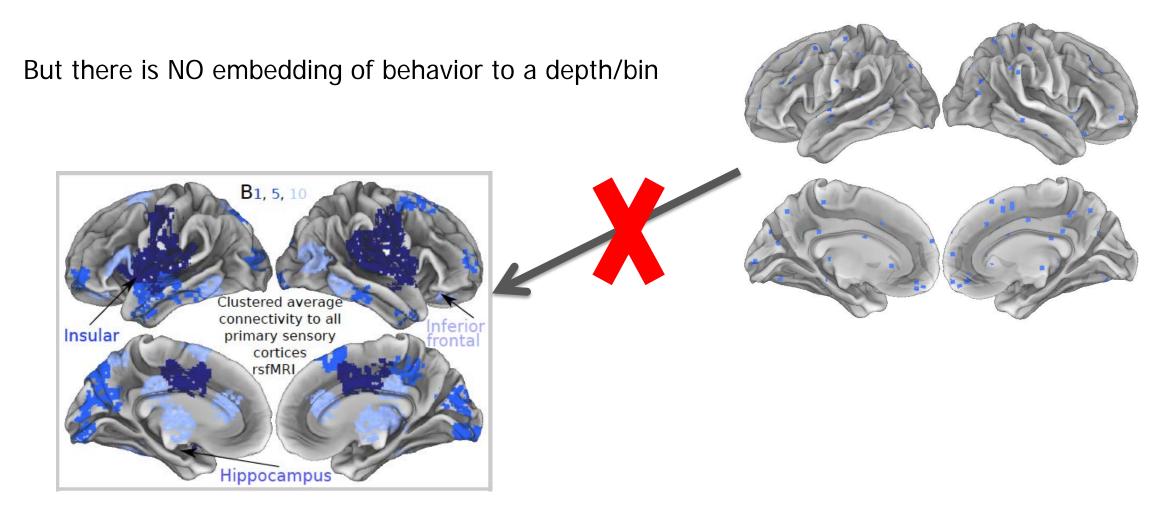
Connectome models are recursive, measure fMRI + DTI distance to create hierarchy from input cortices. (Each ROI in one depth/bin, equal neurons per bin)

Connectome depth network is the average of the different modalities:



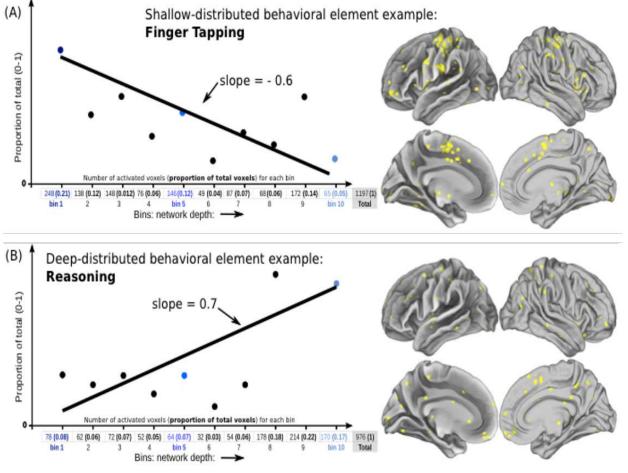
Sources: Harvard-Oxford cortical-subcortical Probabilistic Atlas in FMRIB Software Library; Brodmann's labels from BrainMap Talairach client and meta-analysis





For each Cognitive behavior (across its recorded experiments):

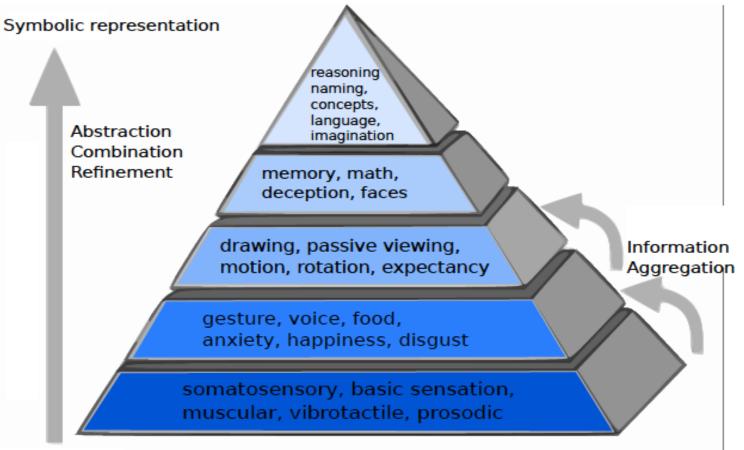
- Count # activation instances per bin
- Normalize activations (activation per bin/total in all bins)
- Approximate with a line
- Identify the resulting slope



- Repeat slope calculation for each cognitive behavior and order in hierarchy by slopes
- Humans ordered tasks by • abstraction via survey (Online Turk) without knowing about the slope hierarchy
- Close to perfect correlation

Banked by slope: Bius: 1 534 2 6189 10	Non-Painful Electrical Stimulation Vibrotactile Monitor/Discrimination Whistling Video Games Chewing/Swallowing Grasping Flashing Checkerboard Finger Tapping Flexion/Extension Tactile Monitor/Discrimination Isometric Force Music Comprehension/Production Oddball Discrimination Transcranial Magnetic Stimulation Reading (Overt) Imagined Movement Passive Listening Pain Monitor/Discrimination Divided Auditory Attention Pointing Breath-Holding Classical Conditioning Sequence Recall/Learning Tone Monitor/Discrimination Simon Task Flanker Task Writing Eating/Drinking Fixation	Pitch Monitor/Discrimination Drawing Saccades Theory of Mind Task Rest Non-Painful Thermal Stimulation Micturition Task Olfactory Monitor/Discrimination Acupuncture Syntactic Discrimination Deductive Reasoning Go/No-Go Recitation/Repetition (Covert) Word Stem Completion (Covert) Word Stem Completion (Covert) Visual Pursuit/Tracking Face Monitor/Discrimination Free Word List Recall Passive Viewing Film Viewing Visual Distractor/Visual Attention Cued Explicit Recognition Episodic Recall Anti-Saccades Reading (Covert) Deception Task Orthographic Discrimination Sternberg Task Counting/Calculation Mental Rotation	Proportion	ming (Covert)
	Fixadon	/ magned objects/ocenes	Bins: 1 2 3 4	5 6789 10

• Slope-hierarchy yields datadriven pyramid of cognition



Incoming sense data

Nature Communication (2015) https://images.nature.com/w926/nature-assets/srep/2015/151216/srep18112/images/srep18112-f10.jpg



- > Abstraction (Science):
 - A process of creating general concepts or representations ... often with the goal of compressing the information content ... and retaining only information which is relevant
 - Process of information aggregation, refinement, combination, integration, coalescing, accumulation, amalgamation; combination of ideas
- Generalization (Psychology)
 - The ability to respond in the same way to different but similar stimuli

Can similar method be used on DNNs?

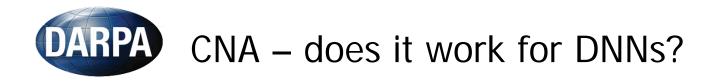
Cognitive Neural Activation (CNA): Mathematical Definition

Definition: Assume X is a dataset, and A is a network architecture:

- 1) a(x) the abstraction level of $x \in X$
- 2) $\beta(x)$ the firing slope of A when calculating $x \in X$
- 3) CNA the correlation (Pearson) between the levels of abstraction (for all $x \in X$) and the neuronal slopes:

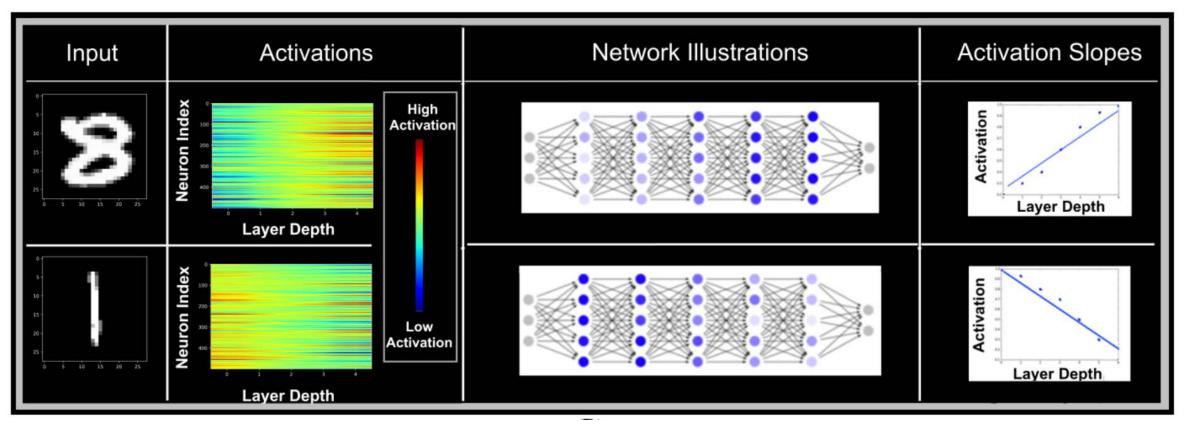
CNA (X, A) =
$$\rho_{a,\beta}$$

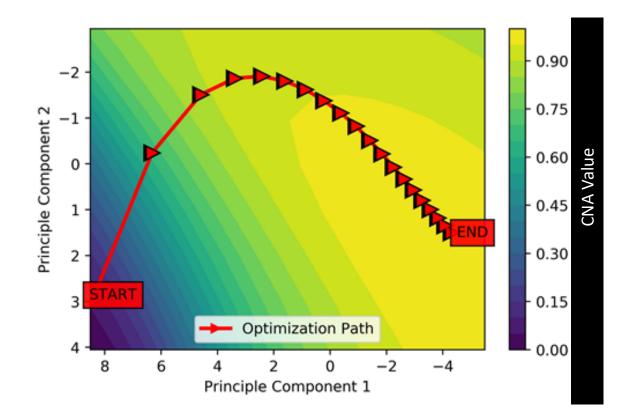
	Neuroscience	
X – network computation	Abstraction tasks from fMRI datasets	
A - architecture	Connectome depth network	
a(x) - abstraction	Ordered by survey	
β(x) - slope	The slope via big-data analysis	
Finding	CNA (X,A) ~ 1	



	Neuroscience	DNN
X – network computation	Abstraction tasks from fMRI datasets	Input data to DNN
A - architecture	Connectome depth network	Layered architecture
a(x) - abstraction	Ordered by survey	Shannon entropy (approximated)
β(x) - slope	The slope via big-data analysis	Total firing per layer, slope calculated
Finding	CNA (X,A) ~ 1	1/0/-1 ?

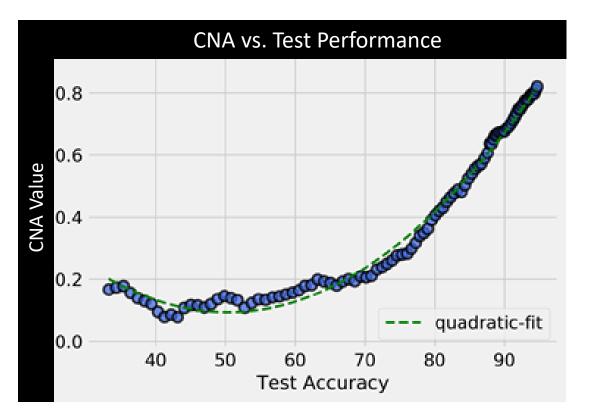
Illustration: MNIST on MLP with 5 layers and 500 neurons per layer



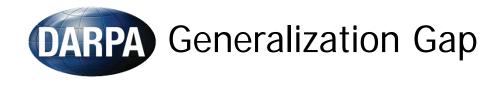


- Backpropagation during training changes weights towards higher CNA
- Weights change according to an optimization path that climbs to elevated values of CNA
- Largest rate of change occurs in early training for both the CNA and the training accuracy

Source: Siegelmann/Taylor research, Univ. of Mass, Amherst



- 147 combinations: 6 datasets (including ImageNet),
 4 architectures, weights recorded every 20 passes
- Shows significant correlation with test accuracy
- At >70% DNNs become similar to the brain as classification results improve

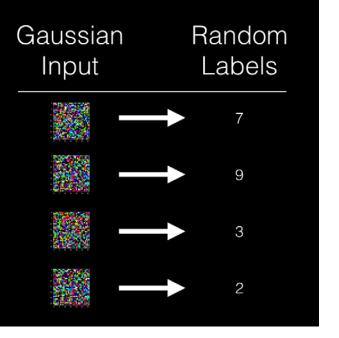


- Goal of generalization theory explain whether/when/how improving accuracy during training (memorization) also improves test accuracy
- Generalization gap difference between test and training accuracy
- Can CNA function as a generalization gap predictor?

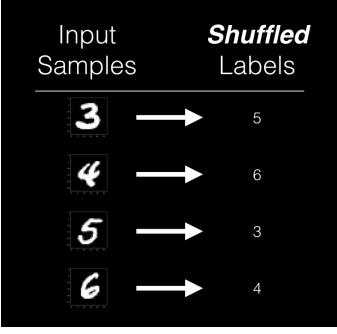
Test on standard datasets: ImageNet, CIFAR-10, CIFAR-100, SVHN, MNIST, Fashion-MNIST, Networks: MLP, VGG-18, ResNet-18, ResNet-100

And

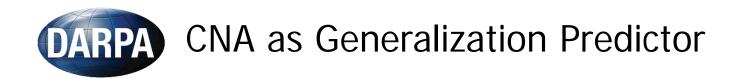
- On non-standard datasets:
- Random labels of 10%-50% in training

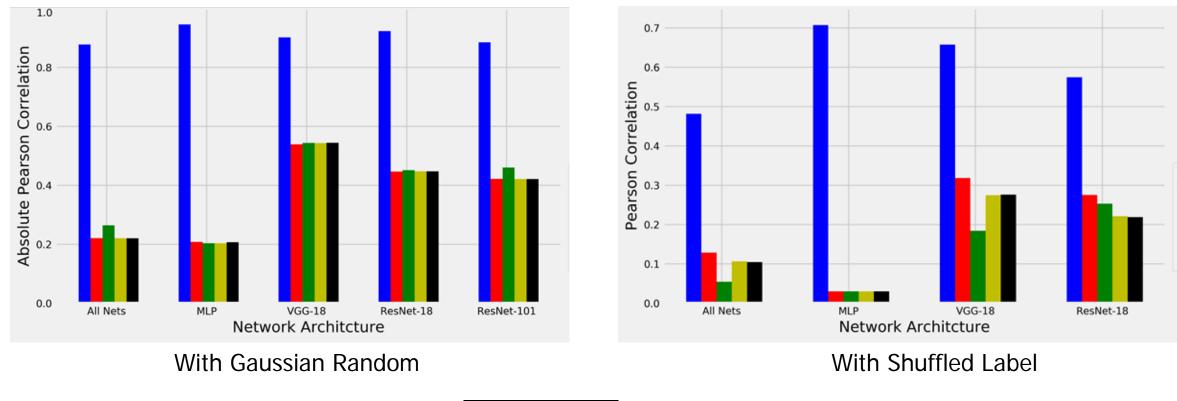


Gaussian Random



Shuffled Labels





Datasets: ImageNet, CIFAR-10, CIFAR-100, SVHN, MNIST, Fashion-MNIST, Networks: MLP, VGG-18, ResNet-18, ResNet-100

Source: Siegelmann/Taylor research, Univ. of Mass, Amherst

DISTRIBUTION A. Approved for public release: distribution unlimited.

- CNA describes how brain abstracts
- CNA shows that brain and DNNs have similar behavior for abstraction
- CNA predicts DNN capability to generalize including on complex datasets

www.darpa.mil

International Conference on Microwaves, Communications, Antennas & Electronic Systems 4-6 November - David Intercontinental Hotel - Tel Aviv, Israel